Yahoo Web Search

Search results

  1. Aug 2, 2021 · 15 Nov 2022. Andrea Galindo, IAEA Office of Public Information and Communication. Nuclear energy is a form of energy released from the nucleus, the core of atoms, made up of protons and neutrons. This source of energy can be produced in two ways: fission – when nuclei of atoms split into several parts – or fusion – when nuclei fuse together.

  2. Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants.

  3. Nuclear energy, energy that is released in significant amounts in processes that affect atomic nuclei, the dense cores of atoms. One method of releasing nuclear energy is by controlled nuclear fission, used in nuclear power plants around the world.

    • The Editors of Encyclopaedia Britannica
    • Overview
    • Types of nuclear reactors
    • Nuclear energy history
    • Nuclear power, climate change, and future designs
    • Nuclear power risks

    Nuclear energy's future as an electricity source may depend on scientists' ability to make it cheaper and safer.

    2:12

    Nuclear power is generated by splitting atoms to release the energy held at the core, or nucleus, of those atoms. This process, nuclear fission, generates heat that is directed to a cooling agent—usually water. The resulting steam spins a turbine connected to a generator, producing electricity.

    About 450 nuclear reactors provide about 11 percent of the world's electricity. The countries generating the most nuclear power are, in order, the United States, France, China, Russia, and South Korea.

    The most common fuel for nuclear power is uranium, an abundant metal found throughout the world. Mined uranium is processed into U-235, an enriched version used as fuel in nuclear reactors because its atoms can be split apart easily.

    In a nuclear reactor, neutrons—subatomic particles that have no electric charge—collide with atoms, causing them to split. That collision—called nuclear fission—releases more neutrons that react with more atoms, creating a chain reaction. A byproduct of nuclear reactions, plutonium, can also be used as nuclear fuel.

    In the U.S. most nuclear reactors are either boiling water reactors, in which the water is heated to the boiling point to release steam, or pressurized water reactors, in which the pressurized water does not boil but funnels heat to a secondary water supply for steam generation. Other types of nuclear power reactors include gas-cooled reactors, whi...

    The idea of nuclear power began in the 1930s, when physicist Enrico Fermi first showed that neutrons could split atoms. Fermi led a team that in 1942 achieved the first nuclear chain reaction, under a stadium at the University of Chicago. This was followed by a series of milestones in the 1950s: the first electricity produced from atomic energy at ...

    Nuclear power isn't considered renewable energy, given its dependence on a mined, finite resource, but because operating reactors do not emit any of the greenhouse gases that contribute to global warming, proponents say it should be considered a climate change solution. National Geographic emerging explorer Leslie Dewan, for example, wants to resurrect the molten salt reactor, which uses liquid uranium dissolved in molten salt as fuel, arguing it could be safer and less costly than reactors in use today.

    Others are working on small modular reactors that could be portable and easier to build. Innovations like those are aimed at saving an industry in crisis as current nuclear plants continue to age and new ones fail to compete on price with natural gas and renewable sources such as wind and solar.

    When arguing against nuclear power, opponents point to the problems of long-lived nuclear waste and the specter of rare but devastating nuclear accidents such as those at Chernobyl in 1986 and Fukushima Daiichi in 2011. The deadly Chernobyl disaster in Ukraine happened when flawed reactor design and human error caused a power surge and explosion at one of the reactors. Large amounts of radioactivity were released into the air, and hundreds of thousands of people were forced from their homes. Today, the area surrounding the plant—known as the Exclusion Zone—is open to tourists but inhabited only by the various wildlife species, such as gray wolves, that have since taken over.

    In the case of Japan's Fukushima Daiichi, the aftermath of the Tohoku earthquake and tsunami caused the plant's catastrophic failures. Several years on, the surrounding towns struggle to recover, evacuees remain afraid to return, and public mistrust has dogged the recovery effort, despite government assurances that most areas are safe.

    Other accidents, such as the partial meltdown at Pennsylvania's Three Mile Island in 1979, linger as terrifying examples of nuclear power's radioactive risks. The Fukushima disaster in particular raised questions about safety of power plants in seismic zones, such as Armenia's Metsamor power station.

    Other issues related to nuclear power include where and how to store the spent fuel, or nuclear waste, which remains dangerously radioactive for thousands of years. Nuclear power plants, many of which are located on or near coasts because of the proximity to water for cooling, also face rising sea levels and the risk of more extreme storms due to climate change.

    • 2 min
    • Christina Nunez
  4. Mar 30, 2024 · nuclear power, electricity generated by power plants that derive their heat from fission in a nuclear reactor. Except for the reactor, which plays the role of a boiler in a fossil-fuel power plant, a nuclear power plant is similar to a large coal-fired power plant, with pumps, valves, steam generators, turbines, electric generators, condensers ...

  5. May 28, 2019 · Nuclear power and hydropower form the backbone of low-carbon electricity generation. Together, they provide three-quarters of global low-carbon generation. Over the past 50 years, the use of nuclear power has reduced CO2 emissions by over 60 gigatonnes – nearly two years’ worth of global energy-related emissions.

  6. Nuclear power is the world’s largest and most reliable source of clean energy, and supplies electricity to the homes of tens of millions in America each and every day. To fight climate change, the world will need new and better ways of leveraging this energy source, which is produced by nuclear reactors through a process that generates zero ...

  1. People also search for