Yahoo Web Search

Search results

  1. People also ask

  2. Aug 28, 2022 · An Introduction to Single-Crystal X-Ray Crystallography. Described simply, single-crystal X-ray diffraction (XRD) is a technique in which a crystal of a sample under study is bombarded with an X-ray beam from many different angles, and the resulting diffraction patterns are measured and recorded.

  3. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.

    • Mechanism
    • Introduction
    • Operation
    • Technology
    • Construction
    • Use
    • Collections
    • Scope
    • Preparation
    • Analysis

    X-ray diffraction is based on constructive interference of monochromatic X-rays and a crystalline sample. These X-rays are generated by a cathode ray tube, filtered to produce monochromatic radiation, collimated to concentrate, and directed toward the sample. The interaction of the incident rays with the sample produces constructive interference (a...

    Typical mineral structures contain several thousand unique reflections, whose spatial arrangement is referred to as a diffraction pattern. Indices (hkl) may be assigned to each reflection, indicating its position within the diffraction pattern. This pattern has a reciprocal Fourier transform relationship to the crystalline lattice and the unit cel...

    Single-crystal diffractometers use either 3- or 4-circle goniometers. These circles refer to the four angles (2θ, χ, φ, and Ω) that define the relationship between the crystal lattice, the incident ray and detector. Samples are mounted on thin glass fibers which are attached to brass pins and mounted onto goniometer heads. Adjustment of the X, Y an...

    Modern single-crystal diffractometers use CCD (charge-coupled device) technology to transform the X-ray photons into an electrical signal which are then sent to a computer for processing.

    Samples are mounted on the tip of a thin glass fiber using an epoxy or cement. Care should be taken to use just enough epoxy to secure the sample without embedding it in the mounting compound. The fiber may be ground to a point to minimize absorption by the glass. This fiber is attached to a brass mounting pin, usually by the use of modeling clay, ...

    The goniometer head and sample are then affixed to the diffractometer. Samples can be centered by viewing the sample under an attached microscope or video camera and adjusting the X,Y and Z directions until the sample is centered under the cross-hairs for all crystal orientations.

    After the refined cell and orientation matrix have been determined, intensity data is collected. Generally this is done by collecting a sphere or hemisphere of data using an incremental scan method, collecting frames in 0.1° to 0.3° increments (over certain angles while others are held constant). For highly symmetric materials, collection can be co...

    Corrections for Background, Absorption, etc. After the data have been collected, corrections for instrumental factors, polarization effects, X-ray absorption and (potentially) crystal decomposition must be applied to the entire data set. This integration process also reduces the raw frame data to a smaller set of individual integrated intensities....

    Once the data have been collected, the phase problem must be solved to find the unique set of phases that can be combined with the structure factors to determine the electron density and, therefore, the crystal structure. A number of different procedures exist for solution of the phase problem, but the most common method currently, due to the prev...

    Once the initial crystal structure is solved, various steps can be done to attain the best possible fit between the observed and calculated crystal structure. The final structure solution will be presented with an R value, which gives the percent variation between the calculated and observed structures. The single-crystal structure refinement page...

  4. X-ray crystallography is a technique that uses X-rays to study the structure of molecules. X-ray diffraction (XRD) experiments are routinely carried out with either single-crystal or powdered samples. Single-crystal XRD: Single-crystal XRD allows for absolute structure determination.

    • 8 min
  5. Jul 7, 2022 · Abstract. Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer.

  1. People also search for