Yahoo Web Search

Search results

  1. People also ask

  2. While alchemy is often considered a precursor to modern chemistry, the two disciplines differ significantly in their goals, methods, and overall approach. In this article, we will explore the attributes of alchemy and chemistry, highlighting their similarities and differences.

  3. Alchemy, the predecessor of modern chemistry, has influenced the discovery of several scientific concepts and experimental methodologies that have constructed the foundational basis of empirical science. Alchemy had roots in philosophy, astronomy, and religion.

  4. Jun 9, 2023 · People who practiced alchemy were searching for ways to (a) produce elixirs which would hopefully cure all kinds of diseases, and (b) turn base metals (like lead) into precious ones (like gold) via a yet-to-be-found substance called the philosopher's stone.

    • Nathan Chandler
  5. Jan 30, 2013 · Alchemy is now increasingly recognized as a fundamental part of the heritage of chemistry, of continuing human attempts to explore, control, and make use of the natural world. Alchemists developed practical knowledge about matter as well as sophisticated theories about its hidden nature and transformations.

    • alchemy versus chemistry1
    • alchemy versus chemistry2
    • alchemy versus chemistry3
    • alchemy versus chemistry4
    • Overview
    • Alchemy
    • Phlogiston theory

    Three different sets of ideas and skills fed into the origin of alchemy. First was the empirical sophistication of jewelers, gold- and silversmiths, and other artisans who had learned how to fashion precious and semiprecious materials. Among their skills were smelting, assaying, alloying, gilding, amalgamating, distilling, sublimating, painting, and lacquering. The second component was the early Greek theory of matter, especially Aristotelian philosophy, which suggested the possibility of unlimited transformability of one kind of matter into another. The third of alchemy’s roots consisted of a complex combination of ideas derived from Asian philosophies and religions, Hellenistic mystery religions, and what became known as the Hermetic writings (a body of pseudonymous Greek writings on magic, astrology, and alchemy ascribed to the Egyptian god Thoth or his Greek counterpart Hermes Trismegistos). It is important to note, however, that Hellenistic Egypt is only one of several candidates for the homeland of alchemy; at about the same time, similar ideas were developing in Persia, China, and elsewhere.

    In general, alchemists sought to manipulate the properties of matter in order to prepare more valuable substances. Their most familiar quest was to find the philosopher’s stone, a magical substance that would transmute ordinary metals such as copper, tin, iron, or lead into silver or gold. Important materials in this craft included sulfur, mercury, and electrum (a gold-silver alloy). However, many other alchemists spurned alchemical transmutation (aurifaction), devoting their efforts instead to a pharmaceutical preparation known as the “elixir of life” that would cure any disease, including the ultimate disease, death. The philosopher’s stone and the elixir of life could be considered parallel quests, for each would “cure” metallic or human bodies, respectively, yielding immortal perfection. There was a parallel religious dimension to all this as well. Finally, some alchemists spurned material manipulations entirely, devoting themselves to meditation with the goal of achieving spiritual purity and ultimate redemption.

    After the rise of Islam, Arabic-speaking scholars of the 9th century translated Greek scientific and philosophical works into their own language. Thereafter, philosophers in the Islamic world pursued chemical and alchemical ideas with enthusiasm and success. The sizable number of modern chemical words derived from Arabic—alcohol, alkali, alchemy, zircon, elixir, natron, and others—suggests the importance of this period for the history of chemistry. One of the leading ideas of medieval Arabic alchemy was the theory that all metals were formed of sulfur and mercury in various proportions and that altering those proportions could transform the metal under study—even to produce silver or gold from lead or iron. Not every alchemist, however, believed in the possibility of such transmutations.

    Later, scholars in Christian western Europe learned of ancient Greek and early medieval Arabic philosophy by translating these books into Latin. Thus, the alchemical tradition, along with the rest of the Greco-Arabic philosophical and scientific corpus, passed to the West in the course of the 12th century. Well-known Scholastic philosophers of the 13th century, such as Roger Bacon in England and Albertus Magnus in Germany and France, wrote on alchemy. Alongside this learned literature, the empirical chemical arts continued to flourish and comprised a largely separate realm of expertise among artisans, engineers, and mechanics.

    An important Western alchemist of the late 13th century was the pseudonymous Latin writer who called himself Geber in homage to the 8th-century Arab alchemist Jābir ibn Ḥayyān. Geber was the first to record methods for the preparation and use of sulfuric acid, nitric acid, and hydrochloric acid; the earliest clear evidence for widespread familiarity with distilled alcohol also does not much predate his day. These substances could only have been produced by novel stills that were more robust and efficient than their predecessors, and the appearance of these remarkable new materials produced dramatic changes in the repertoire of chemists.

    The Renaissance saw even stronger interest in the science. The German-Swiss physician Paracelsus practiced alchemy, Kabbala, astrology, and magic, and in the first half of the 16th century he championed the role of mineral rather than herbal remedies. His emphasis on chemicals in pharmacy and medicine was influential on later figures, and lively controversies over the Paracelsian approach raged around the turn of the 17th century. Gradually the Hermetic influence declined in Europe, however, as certain celebrated feats of putative aurifaction were revealed as frauds.

    Three different sets of ideas and skills fed into the origin of alchemy. First was the empirical sophistication of jewelers, gold- and silversmiths, and other artisans who had learned how to fashion precious and semiprecious materials. Among their skills were smelting, assaying, alloying, gilding, amalgamating, distilling, sublimating, painting, and lacquering. The second component was the early Greek theory of matter, especially Aristotelian philosophy, which suggested the possibility of unlimited transformability of one kind of matter into another. The third of alchemy’s roots consisted of a complex combination of ideas derived from Asian philosophies and religions, Hellenistic mystery religions, and what became known as the Hermetic writings (a body of pseudonymous Greek writings on magic, astrology, and alchemy ascribed to the Egyptian god Thoth or his Greek counterpart Hermes Trismegistos). It is important to note, however, that Hellenistic Egypt is only one of several candidates for the homeland of alchemy; at about the same time, similar ideas were developing in Persia, China, and elsewhere.

    In general, alchemists sought to manipulate the properties of matter in order to prepare more valuable substances. Their most familiar quest was to find the philosopher’s stone, a magical substance that would transmute ordinary metals such as copper, tin, iron, or lead into silver or gold. Important materials in this craft included sulfur, mercury, and electrum (a gold-silver alloy). However, many other alchemists spurned alchemical transmutation (aurifaction), devoting their efforts instead to a pharmaceutical preparation known as the “elixir of life” that would cure any disease, including the ultimate disease, death. The philosopher’s stone and the elixir of life could be considered parallel quests, for each would “cure” metallic or human bodies, respectively, yielding immortal perfection. There was a parallel religious dimension to all this as well. Finally, some alchemists spurned material manipulations entirely, devoting themselves to meditation with the goal of achieving spiritual purity and ultimate redemption.

    After the rise of Islam, Arabic-speaking scholars of the 9th century translated Greek scientific and philosophical works into their own language. Thereafter, philosophers in the Islamic world pursued chemical and alchemical ideas with enthusiasm and success. The sizable number of modern chemical words derived from Arabic—alcohol, alkali, alchemy, zircon, elixir, natron, and others—suggests the importance of this period for the history of chemistry. One of the leading ideas of medieval Arabic alchemy was the theory that all metals were formed of sulfur and mercury in various proportions and that altering those proportions could transform the metal under study—even to produce silver or gold from lead or iron. Not every alchemist, however, believed in the possibility of such transmutations.

    Later, scholars in Christian western Europe learned of ancient Greek and early medieval Arabic philosophy by translating these books into Latin. Thus, the alchemical tradition, along with the rest of the Greco-Arabic philosophical and scientific corpus, passed to the West in the course of the 12th century. Well-known Scholastic philosophers of the 13th century, such as Roger Bacon in England and Albertus Magnus in Germany and France, wrote on alchemy. Alongside this learned literature, the empirical chemical arts continued to flourish and comprised a largely separate realm of expertise among artisans, engineers, and mechanics.

    An important Western alchemist of the late 13th century was the pseudonymous Latin writer who called himself Geber in homage to the 8th-century Arab alchemist Jābir ibn Ḥayyān. Geber was the first to record methods for the preparation and use of sulfuric acid, nitric acid, and hydrochloric acid; the earliest clear evidence for widespread familiarity with distilled alcohol also does not much predate his day. These substances could only have been produced by novel stills that were more robust and efficient than their predecessors, and the appearance of these remarkable new materials produced dramatic changes in the repertoire of chemists.

    The Renaissance saw even stronger interest in the science. The German-Swiss physician Paracelsus practiced alchemy, Kabbala, astrology, and magic, and in the first half of the 16th century he championed the role of mineral rather than herbal remedies. His emphasis on chemicals in pharmacy and medicine was influential on later figures, and lively controversies over the Paracelsian approach raged around the turn of the 17th century. Gradually the Hermetic influence declined in Europe, however, as certain celebrated feats of putative aurifaction were revealed as frauds.

    This shift was partly simple self-promotion by chemists in the new environment of the Enlightenment, whose vanguard glorified rationalism, experiment, and progress while demonizing the mystical. However, it was also becoming ever clearer that certain central ideas of alchemy (especially metallic transmutation) had never been demonstrated. One of the leaders in this regard was the German physician and chemist Georg Ernst Stahl, who vigorously attacked alchemy (after dabbling in it himself) and proposed an expansive new chemical theory. Stahl noted parallels between the burning of combustible materials and the calcination of metals—the conversion of a metal into its calx, or oxide. He suggested that both processes consisted of the loss of a material fluid, contained within all combustibles, called phlogiston.

    Phlogiston became the centrepiece of a broad-ranging theory that dominated 18th-century chemical thought. Phlogiston, in short, was thought to be a material substance that defined combustibility. When metallic iron becomes red rust, it loses its phlogiston, just as a burning log does. The ashes of the log and the red rust “ashes” (calx) of iron can no longer burn because they no longer contain the principle of combustibility, or phlogiston. But iron calx can be converted back to the metal if it is strongly heated in the presence of a phlogiston-rich substance such as charcoal. The charcoal donates its phlogiston (becoming ashes itself), while the calx turns into molten metallic iron. Thus, smelting (reduction) of metallic ores could also be understood in phlogistic terms. Later phlogistonists added respiration to the number of phenomena that the theory could elucidate. An animal breathes air, emitting phlogiston in an analogy to a slow fire, fueled by the phlogiston-rich food it consumes. Earth’s atmosphere avoids excess accumulation of phlogiston because plants incorporate it into combustible plant tissues that can then be used as animal food. Combustion, calcination, or respiration eventually cease in an enclosed space because air has a limited capacity to absorb the phlogiston emitted from the burning, calcining, or respiring entity.

    The phlogiston theory became popular both because of its great success in explaining phenomena and guiding further investigation and because of a certain Enlightenment predilection for materialistic physical theories (the putative fluid of heat became known as caloric, and there were other suggested fluids of electricity, light, and so on). This materialist-mechanist trend can also be seen in the diffuse but powerful influence of Newton and René Descartes on chemists of the 18th century. Enlightenment chemists established distinctive scientific communities and a well-defined discipline (closely allied, to be sure, with medical and artisanal studies) in the major countries of Europe. The chemist’s workplace or laboratory (the word itself had been coined in the Renaissance to apply to the chemical arts) was now closely associated with the field, and a standardized repertoire of operations was taught there.

    Still unsettled were some fundamental issues relating to chemical composition. To a phlogistonist, a metallic calx was elemental, and the associated metal was a compound of calx plus phlogiston. This puzzled some, though, since the metal gained rather than lost weight when it supposedly lost phlogiston to become a calx. The issues were sharpened in the 1770s, when the virtuoso English chemist (and Unitarian minister) Joseph Priestley produced a new gas by heating certain minerals. A candle burned in this gas with extraordinary vigour, and in an enclosed space a mouse breathing it survived far longer than one could in ordinary air. Priestley’s explanation was that the new gas had been radically dephlogisticated and, hence, had much greater capacity than air for absorbing phlogiston.

  6. Chemistry is a subject that has its roots in the ancient tradition known as alchemy, from which it derives its name. Alchemy was a combination of philosophy and science that had both practical and mystical aspects. The goals of alchemy were varied and difficult to summarize.

  7. Jun 20, 2024 · The modern distinction between alchemy and chemistry, wherein the former refers exclusively to the transmutation of base metals into gold, is a caricature popularized above all by the philosophes of the French Enlightenment.

  1. People also search for