Yahoo Web Search

Search results

    • Image courtesy of ncbi.nlm.nih.gov

      ncbi.nlm.nih.gov

      Protists that live in marine environments

      • Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries.
      www.wikiwand.com › en › Marine_protists
  1. People also ask

  2. Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes (bacteria and archaea) and later evolved into more complex eukaryotes. Eukaryotes are the more developed life forms ...

  3. Feb 28, 2022 · Although the species is a basic unit and currency in ecological and evolutionary research in any environment, there is no consensus on how a microbial species is best defined. Traditionally, protists have been defined by their morphological features, but we now know that morphological features can change under varying environmental conditions ...

  4. Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes (bacteria and archaea) and later evolved into more complex eukaryotes.

  5. Nov 21, 2016 · Marine protists are a phylogenetically broad group of eukaryotic organisms that are capable of existence as single cells, although many form colonies that exhibit coordinated behaviour.

    • David A. Caron, Harriet Alexander, Andrew E. Allen, Andrew E. Allen, John M. Archibald, John M. Arch...
    • 2017
    • Overview
    • Ecology

    The distribution of protists is worldwide; as a group, these organisms are both cosmopolitan and ubiquitous. Every individual species, however, has preferred niches and microhabitats, and all protists are to some degree sensitive to changes in their surroundings. The availability of sufficient nutrients and water, as well as sunlight for photosynthetic forms, is, however, the only major factor restraining successful and heavy protist colonization of practically any habitat on Earth.

    Free-living forms are particularly abundant in natural aquatic systems, such as ponds, streams, rivers, lakes, bays, seas, and oceans. Certain of these forms may occur at specific levels in the water column, or they may be bottom-dwellers (benthic). More specialized, sometimes human-made, habitats are also often well populated by both pigmented and nonpigmented protists. Such sites include thermal springs, briny pools, cave waters, snow and ice, beach sands and intertidal mud flats, bogs and marshes, swimming pools, and sewage treatment plants. Many are commonly found in various terrestrial habitats, such as soils, forest litter, desert sands, and the bark and leaves of trees. Cysts and spores may be recovered from considerable heights in the atmosphere.

    Fossilized forms are plentiful in the geologic record. Fossils of unicellular organisms have been found in strata dated to about 1.9 billion years ago, during the Precambrian. Many lineages of protists have left no record of their now extinct forms, however, making speculation about early phylogenetic and evolutionary relationships with other eukaryotes difficult to verify.

    Symbiotic protists are as widespread as free-living forms, since they occur everywhere their hosts are to be found. Hundreds or even thousands of kinds of protists live as ectosymbionts or episymbionts, finding suitable niches with plants, fungi, vertebrate and invertebrate animals, or even other protists. Seldom are the hosts harmed; in fact, these often mobile substrates are actually used as a means of dispersal.

    Endosymbionts include commensals, facultative parasites, and obligate parasites; the latter category embraces forms that have effects on their hosts ranging from mild discomfort to death. Protozoan and certainly nonphotosynthetic protists are implicated far more often in such associations than are algal forms. In a few protists, both cytoplasm and nuclei can be invaded by other protists, and intimate, mutually beneficial relationships between protistan hosts and protistan symbionts have been seen, such as foraminiferans or ciliates that nourish symbiotic algae in their cytoplasm. When higher eukaryotes are hosts to protists, all body cavities and organ systems are susceptible to invasion, although terrestrial plants bear relatively few such parasites. In animal hosts, the three principal areas serving as sites for endosymbiotic species are the coelom, the digestive tract and its associated organs, and the circulatory system.

    The numbers of individuals in populations of many protists reach staggering figures. There are, on the average, tens of thousands of protists in a gram of arable soil, hundreds of thousands in the gut of a termite, millions in the rumen of a bovine mammal, billions in a tiny patch of floating plankton in the sea, and trillions in the bloodstream of a person infected with severe malaria. Some severe diseases of humans are caused by protists, primarily blood parasites. Malaria, trypanosomiasis (e.g., African sleeping sickness), leishmaniasis, toxoplasmosis, and amoebic dysentery are debilitating or fatal afflictions.

    The distribution of protists is worldwide; as a group, these organisms are both cosmopolitan and ubiquitous. Every individual species, however, has preferred niches and microhabitats, and all protists are to some degree sensitive to changes in their surroundings. The availability of sufficient nutrients and water, as well as sunlight for photosynthetic forms, is, however, the only major factor restraining successful and heavy protist colonization of practically any habitat on Earth.

    Free-living forms are particularly abundant in natural aquatic systems, such as ponds, streams, rivers, lakes, bays, seas, and oceans. Certain of these forms may occur at specific levels in the water column, or they may be bottom-dwellers (benthic). More specialized, sometimes human-made, habitats are also often well populated by both pigmented and nonpigmented protists. Such sites include thermal springs, briny pools, cave waters, snow and ice, beach sands and intertidal mud flats, bogs and marshes, swimming pools, and sewage treatment plants. Many are commonly found in various terrestrial habitats, such as soils, forest litter, desert sands, and the bark and leaves of trees. Cysts and spores may be recovered from considerable heights in the atmosphere.

    Fossilized forms are plentiful in the geologic record. Fossils of unicellular organisms have been found in strata dated to about 1.9 billion years ago, during the Precambrian. Many lineages of protists have left no record of their now extinct forms, however, making speculation about early phylogenetic and evolutionary relationships with other eukaryotes difficult to verify.

    Symbiotic protists are as widespread as free-living forms, since they occur everywhere their hosts are to be found. Hundreds or even thousands of kinds of protists live as ectosymbionts or episymbionts, finding suitable niches with plants, fungi, vertebrate and invertebrate animals, or even other protists. Seldom are the hosts harmed; in fact, these often mobile substrates are actually used as a means of dispersal.

    Endosymbionts include commensals, facultative parasites, and obligate parasites; the latter category embraces forms that have effects on their hosts ranging from mild discomfort to death. Protozoan and certainly nonphotosynthetic protists are implicated far more often in such associations than are algal forms. In a few protists, both cytoplasm and nuclei can be invaded by other protists, and intimate, mutually beneficial relationships between protistan hosts and protistan symbionts have been seen, such as foraminiferans or ciliates that nourish symbiotic algae in their cytoplasm. When higher eukaryotes are hosts to protists, all body cavities and organ systems are susceptible to invasion, although terrestrial plants bear relatively few such parasites. In animal hosts, the three principal areas serving as sites for endosymbiotic species are the coelom, the digestive tract and its associated organs, and the circulatory system.

    The numbers of individuals in populations of many protists reach staggering figures. There are, on the average, tens of thousands of protists in a gram of arable soil, hundreds of thousands in the gut of a termite, millions in the rumen of a bovine mammal, billions in a tiny patch of floating plankton in the sea, and trillions in the bloodstream of a person infected with severe malaria. Some severe diseases of humans are caused by protists, primarily blood parasites. Malaria, trypanosomiasis (e.g., African sleeping sickness), leishmaniasis, toxoplasmosis, and amoebic dysentery are debilitating or fatal afflictions.

  6. Phytoplankton and floating Sargassum (a type of free-floating marine seaweed) provide a habitat for some sea life found in the neritic zone. Zooplankton, protists, small fishes, and shrimp are found in the neritic zone and are the base of the food chain for most of the world’s fisheries.

  7. Sep 22, 2021 · Protists include the single-celled eukaryotes living in pond water (Figure 13.3.1 13.3. 1 ), although protist species live in a variety of other aquatic and terrestrial environments, and occupy many different niches. Not all protists are microscopic and single-celled; there exist some very large multicellular species, such as the kelps.

  1. People also search for