Yahoo Web Search

Search results

  1. Welcome to The Leaf, the official Nutrisystem weight loss blog, filled with diet, nutrition, fitness and lifestyle tips straight from our weight loss experts, plus inspirational success stories and hundreds of healthy recipes that fit perfectly with your Nutrisystem diet plan program.

    • Overview
    • Leaf function
    • Leaf morphology
    • Leaf modifications
    • Senescence

    leaf, in botany, any usually flattened green outgrowth from the stem of a vascular plant. As the primary sites of photosynthesis, leaves manufacture food for plants, which in turn ultimately nourish and sustain all land animals. Botanically, leaves are an integral part of the stem system. They are attached by a continuous vascular system to the res...

    The main function of a leaf is to produce food for the plant by photosynthesis. Chlorophyll, the substance that gives plants their characteristic green colour, absorbs light energy. The internal structure of the leaf is protected by the leaf epidermis, which is continuous with the stem epidermis. The central leaf, or mesophyll, consists of soft-wal...

    Typically, a leaf consists of a broad expanded blade (the lamina), attached to the plant stem by a stalklike petiole. In angiosperms leaves commonly have a pair of structures known as stipules, which are located on each side of the leaf base and may resemble scales, spines, glands, or leaflike structures. Leaves are, however, quite diverse in size, shape, and various other characteristics, including the nature of the blade margin and the type of venation (arrangement of veins). When only a single blade is inserted directly on the petiole, the leaf is called simple. The margins of simple leaves may be entire and smooth or they may be lobed in various ways. The coarse teeth of dentate margins project at right angles, while those of serrate margins point toward the leaf apex. Crenulate margins have rounded teeth or scalloped margins. Leaf margins of simple leaves may be lobed in one of two patterns, pinnate or palmate. In pinnately lobed margins the leaf blade (lamina) is indented equally deep along each side of the midrib (as in the white oak, Quercus alba), and in palmately lobed margins the lamina is indented along several major veins (as in the red maple, Acer rubrum). A great variety of base and apex shapes also are found. The leaf may also be reduced to a spine or scale.

    Veins, which support the lamina and transport materials to and from the leaf tissues, radiate through the lamina from the petiole. The types of venation are characteristic of different kinds of plants: for example, dicotyledons such as poplars and lettuce have netlike venation and usually free vein endings; monocotyledons like lilies and bamboo have parallel venation and rarely free vein endings.

    Whole leaves or parts of leaves are often modified for special functions, such as for climbing and substrate attachment, storage, protection against predation or climatic conditions, or trapping and digesting insect prey. In temperate trees leaves are simply protective bud scales; in the spring when shoot growth is resumed, they often exhibit a complete growth series from bud scales to fully developed leaves.

    Spines are also modified leaves. In cacti, spines are wholly transformed leaves that protect the plant from herbivores, radiate heat from the stem during the day, and collect and drip condensed water vapour during the cooler night. In the many species of the spurge family (Euphorbiaceae), the stipules are modified into paired stipular spines and the blade develops fully. In ocotillo (Fouquieria splendens), the blade falls off and the petiole remains as a spine.

    Special offer for students! Check out our special academic rate and excel this spring semester!

    Learn More

    Many desert plants, such as Lithops and aloe, develop succulent leaves for water storage. The most common form of storage leaves are the succulent leaf bases of underground bulbs (e.g., tulip and Crocus) that serve as either water- or food-storage organs or both. Many nonparasitic plants that grow on the surfaces of other plants (epiphytes), such as some of the bromeliads, absorb water through specialized hairs on the surfaces of their leaves. In the water hyacinth (Eichhornia crassipes), swollen petioles keep the plant afloat.

    Leaves or leaf parts may be modified to provide support. Tendrils and hooks are the most common of these modifications. In the flame lily (Gloriosa superba), the leaf tip of the blade elongates into a tendril and twines around other plants for support. In the garden pea (Pisum sativum), the terminal leaflet of the compound leaf develops as a tendril. In nasturtium (Tropaeolum majus) and Clematis, the petioles coil around other plants for support. In catbrier (Smilax), the stipules function as tendrils. Many monocotyledons have sheathing leaf bases that are concentrically arranged and form a pseudotrunk, as in banana (Musa). In many epiphytic bromeliads, the pseudotrunk also functions as a water reservoir.

    Leaves are essentially short-lived structures. Even when they persist for two or three years, as in coniferous and broad-leaved evergreens, they make little contribution to the plant after the first year. The fall of leaves, whether in the first autumn in most deciduous trees or after several years in evergreens, results from the formation of a weak zone, the abscission layer, at the base of the petiole. Abscission layers may also form when leaves are seriously damaged by insects, disease, or drought. As a result, a zone of cells across the petiole becomes softened until the leaf falls. A healing layer then forms on the stem and closes the wound, leaving the leaf scar, a prominent feature in many winter twigs and an aid in identification.

    In perennial plants, leaf fall is usually associated with approaching winter dormancy. In many trees leaf senescence is brought about by declining day length and falling temperature toward the end of the growing season. Chlorophyll production in deciduous plants slows as the days get shorter and cooler, and eventually the pigment is broken down completely. Yellow and orange pigments called carotenoids become more conspicuous, and, in some species, anthocyanin pigments accumulate. Tannins give oak leaves and certain other plants their dull brown colour. These changes in leaf pigments are responsible for the autumn colours of leaves. There are some indications that day length may control leaf senescence in deciduous trees through its effect on hormone metabolism; both gibberellins and auxins have been shown to retard leaf fall and to preserve the greenness of leaves under the short-day conditions of autumn.

    • The Editors of Encyclopaedia Britannica
  2. A leaf is lateral photosynthetic organ of shoot with restricted growth.

  3. People also ask

  4. 4 days ago · Journey through four distinct worlds inside The Leaf. Find yourself in a vibrant display surrounded by colour, texture, and fragrance. Breathe in the aromas of the Mediterranean, and find winter respite in a tropical oasis. Discover what you can expect during your visit to The Leaf.

  5. Nov 4, 2019 · Plant leaves are very important structures as they help to maintain life on earth by generating food (sugars) via photosynthesis. Leaves can have different shapes and sizes. The basic components of leaves in flowering plants (angiosperms) include the blade, the petiole, and the stipules.

    • Regina Bailey
    • The Leaf1
    • The Leaf2
    • The Leaf3
    • The Leaf4
    • The Leaf5
  6. Welcome to The Leaf: your ultimate destination for all the information and inspiration you need to achieve your weight loss goals. With carefully curated articles, delicious seasonal recipes, effective workouts for your busy schedule, and essential dining out advice, we’ve got you covered.

  7. Oct 31, 2023 · Leaf Structure and Function. The outermost layer of the leaf is the epidermis. It consists of the upper and lower epidermis, which are present on either side of the leaf. Botanists call the upper side the adaxial surface (or adaxis) and the lower side the abaxial surface (or abaxis). The epidermis aids in the regulation of gas exchange.

  1. People also search for