Yahoo Web Search

Search results

  1. May 15, 2024 · The highest risk of Zika-associated birth defects is with infection during the first and second trimesters. In the U.S. states and territories, about 2 in 25 (8%) pregnant people with confirmed Zika virus infection in the 1st trimester had babies with Zika-associated birth defects. 1

    • Zika Virus

      Zika is linked to birth defects. Zika infection during...

  2. May 19, 2016 · Previous teratogens have caused specific birth defects or syndromes rather than a broad range of birth defects. 33 Many fetuses and infants with presumed congenital Zika virus infection have had a ...

    • Sonja A. Rasmussen, Denise J. Jamieson, Margaret A. Honein, Lyle R. Petersen
    • 2016
  3. People also ask

    • Overview
    • Discussion
    • References

    Altmetric:

    Citations:

    Views:

    Views equals page views plus PDF downloads

    Tables

    Table 1

    During 2015–2017, large Zika virus outbreaks occurred throughout the United States (including U.S. territories and freely associated states). In the United States, infections during pregnancy were initially reported among U.S. travelers returning from affected countries.††† During 2016, widespread local transmission was documented in the territories of Puerto Rico and the U.S. Virgin Islands, and limited transmission was documented in some counties in Florida and Texas.§§§ Among completed pregnancies with laboratory evidence of Zika virus infection reported to USZPIR, 4.6% of live-born infants had any Zika-associated birth defect. Among the subgroup with NAAT-positive results, Zika-associated birth defects were reported with exposures throughout pregnancy but were more prevalent among infants born to mothers with exposure early in pregnancy. Approximately two thirds of pregnant women in this cohort reported asymptomatic infections.¶¶¶ The similar frequency of Zika-associated birth defects among asymptomatic and symptomatic pregnant women is consistent with previous findings (3,5).

    Certain individual brain and eye defects associated with Zika virus infection were frequently reported in USZPIR cohort. A similar subset of Zika-associated birth defects was found to have significantly higher prevalence ratios in areas of widespread local transmission compared with areas without local transmission in the Zika Birth Defects Surveillance System.**** Given the short window for testing and that symptoms of Zika are often mild or absent, combining these two systems has identified the most prevalent Zika-associated birth defects. Using a surveillance system that monitored outcomes regardless of testing and a system that monitored outcomes among those possibly exposed to Zika virus has been critical to understanding the effects of Zika virus infection during pregnancy on infants and children.

    The findings in this report are subject to at least five limitations. First, these data are based on information abstracted from medical records. Although CDC provided specific guidance for evaluation of all infants born from pregnancies with possible Zika virus exposure during pregnancy (7), these evaluations might not have been feasible, were not always conducted, or were not found in records (4). Zika-associated birth defects, especially individual brain and eye defects might not have been detected without occurrence and reporting of neuroimaging and ophthalmologic examinations. Second, these findings are only applicable to live births. Pregnancy losses are likely underreported to USZPIR, and among those reported, postnatal studies to verify prenatal findings or identify additional defects are often lacking. Third, although routine testing during pregnancy occurred in areas with local Zika virus transmission, a potential bias could have been introduced in areas without local transmission, as differential testing might have occurred in women reporting possible Zika virus exposure related to travel or sex or when birth defects were detected in the fetus or infant. Fourth, USZPIR surveillance case definition includes infants with microcephaly based on head circumference measurement at birth alone, and only one third of these had sufficient information to be evaluated for possible measurement error. Thus, misclassification of infants with microcephaly based on birth head circumference alone might still exist. Finally, pregnancies in persons with possible Zika virus exposure, including those with evidence of unspecified flavivirus infection were included; therefore, some might not have had Zika virus infection during pregnancy. Analysis of the subgroup with NAAT-positive results indicated higher frequency of any Zika-associated birth defects, but the distribution of individual defects was generally consistent between the total cohort and this subgroup.

    Much has been learned since the first infant with Zika-associated birth defects was identified in the United States. This report is the first to describe Zika-associated birth defects from USZPIR with data combined from the U.S. states, DC, and U.S. territories and freely associated states. The study provides a description of the frequency of individual Zika-associated birth defects reported among infants from pregnancies with laboratory evidence of confirmed or possible Zika virus infection. Additional study is needed to define the full spectrum of Zika-associated outcomes, including any specific defects or combination of defects that might predict the presence of Zika virus infection and Zika virus circulation. Further monitoring of these infants for neurodevelopmental abnormalities is ongoing. Infants exposed to Zika virus infection in utero, but without structural birth defects, might also have neurologic sequelae and developmental delay (4,8). Zika virus outbreaks are tracked globally; Zika virus infection remains a nationally reportable disease in the United States.†††† These findings can help to target surveillance efforts to the most common brain and eye defects associated with Zika virus infection during pregnancy should a Zika virus outbreak reemerge, and might provide a signal to the reemergence of Zika virus, particularly in geographic regions without ongoing comprehensive Zika virus surveillance

    1.Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med 2016;374:1981–7. https://doi.org/10.1056/NEJMsr1604338external icon PMID:27074377external icon

    2.Moore CA, Staples JE, Dobyns WB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 2017;171:288–95. https://doi.org/10.1001/jamapediatrics.2016.3982external icon PMID:27812690external icon

    3.Reynolds MR, Jones AM, Petersen EE, et al.; U.S. Zika Pregnancy Registry Collaboration. Vital signs: update on Zika virus-associated birth defects and evaluation of all U.S. infants with congenital Zika virus exposure—U.S. Zika Pregnancy Registry, 2016. MMWR Morb Mortal Wkly Rep 2017;66:366–73. https://doi.org/10.15585/mmwr.mm6613e1external icon PMID:28384133external icon

    4.Rice ME, Galang RR, Roth NM, et al. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. territories and freely associated states, 2018. MMWR Morb Mortal Wkly Rep 2018;67:858–67. https://doi.org/10.15585/mmwr.mm6731e1external icon PMID:30091967external icon

    5.Honein MA, Dawson AL, Petersen EE, et al.; US Zika Pregnancy Registry Collaboration. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 2017;317:59–68. https://doi.org/10.1001/jama.2016.19006external icon PMID:27960197external icon

    6.Olson SM, Delaney A, Jones AM, et al. Updated baseline prevalence of birth defects potentially related to Zika virus infection. Birth Defects Res 2019;111:938–40. https://doi.org/10.1002/bdr2.1546external icon PMID:31264801external icon

  4. Zika virus is a mosquito-borne virus first identified in Uganda in 1947 in a Rhesus macaque monkey followed by evidence of infection and disease in humans in other African countries in the 1950s. From the 1960s to 1980s, sporadic human infections were detected across Africa and Asia. However, since 2007 outbreaks of Zika virus disease have been ...

  5. When a person who is pregnant gets Zika, the virus can pass to the fetus. If this happens, the fetus has an increased chance of certain birth defects and developmental problems known as congenital Zika syndrome (CZS). CZS can include microcephaly (very small head and brain), severe brain defects, eye defects, hearing loss, and/or problems with ...

  1. Searches related to zika virus birth defects

    zika virus birth defects pictureszika virus birth defects trimester
  1. People also search for