Yahoo Web Search

Search results

    • Potassium

      • Potassium, or K+, is the main cation in the intracellular fluid, and it’s responsible for maintaining the osmolality of the fluid within the cells. Potassium works closely with sodium to maintain the cell’s resting membrane potential, which is the distribution of ions on either side of the cellular membrane.
      www.osmosis.org › learn › Fluid_and_Electrolyte_Balance
  1. Jul 31, 2024 · Study with Quizlet and memorize flashcards containing terms like What type of cell is Osmosis Jones, Why do the cop and his girlfriend need to see the Kidneys, What happens when there are germs in the bloodstream and more.

  2. People also ask

  3. Study with Quizlet and memorize flashcards containing terms like How does osmosis occur?, What is a solute?, Why do we need a selectively permeable membrane for osmosis to occur? and more.

  4. Process by which a cell takes material into the cell by infolding of the cell membrane forming a vesicle. exocytosis. Process by which a cell releases large amounts of material. Study with Quizlet and memorize flashcards containing terms like osmosis, homeostasis, active transport and more.

  5. Oct 31, 2023 · Key Points. Osmosis occurs according to the concentration gradient of water across the membrane, which is inversely proportional to the concentration of solutes. Osmosis occurs until the concentration gradient of water goes to zero or until the hydrostatic pressure of the water balances the osmotic pressure.

    • Overview
    • Introduction
    • How it works
    • Osmolarity
    • Tonicity
    • Tonicity in living systems

    Osmosis and tonicity. Hypertonic, isotonic, and hypotonic solutions and their effect on cells.

    Have you ever forgotten to water a plant for a few days, then come back to find your once-perky arugula a wilted mess? If so, you already know that water balance is very important for plants. When a plant wilts, it does so because water moves out of its cells, causing them to lose the internal pressure—called turgor pressure—that normally supports the plant.

    Why does water leave the cells? The amount of water outside the cells drops as the plant loses water, but the same quantity of ions and other particles remains in the space outside the cells. This increase in solute, or dissolved particle, concentration pulls the water out of the cells and into the extracellular spaces in a process known as osmosis.

    Why does water move from areas where solutes are less concentrated to areas where they are more concentrated?

    This is actually a complicated question. To answer it, let’s take a step back and refresh our memory on why diffusion happens. In diffusion, molecules move from a region of higher concentration to one of lower concentration—not because they’re aware of their surroundings, but simply as a result of probabilities. When a substance is in gas or liquid form, its molecules will be in constant, random motion, bouncing or sliding around one another. If there are lots of molecules of a substance in compartment A and no molecules of that substance in compartment B, it’s very unlikely—impossible, actually—that a molecule will randomly move from B to A. On the other hand, it’s extremely likely that a molecule will move from A to B. You can picture all of those molecules bouncing around in compartment A and some of them making the leap over to compartment B. So, the net movement of molecules will be from A to B, and this will be the case until the concentrations become equal.

    In the case of osmosis, you can once again think of molecules—this time, water molecules—in two compartments separated by a membrane. If neither compartment contains any solute, the water molecules will be equally likely to move in either direction between the compartments. But if we add solute to one compartment, it will affect the likelihood of water molecules moving out of that compartment and into the other—specifically, it will reduce this likelihood.

    Why should that be? There are some different explanations out there. The one that seems to have the best scientific support involves the solute molecules actually bouncing off the membrane and physically knocking the water molecules backwards and away from it, making them less likely to cross1,2‍ .

    Regardless of the exact mechanisms involved, the key point is that the more solute water contains, the less apt it will be to move across a membrane into an adjacent compartment. This results in the net flow of water from regions of lower solute concentration to regions of higher solute concentration.

    This process is illustrated in the beaker example above, where there will be a net flow of water from the compartment on the left to the compartment on the right until the solute concentrations are nearly balanced. Note that they will not become perfectly equal in this case because the hydrostatic pressure exerted by the rising water column on the right will oppose the osmotic driving force, creating an equilibrium that stops short of equal concentrations.

    Osmolarity describes the total concentration of solutes in a solution. A solution with a low osmolarity has fewer solute particles per liter of solution, while a solution with a high osmolarity has more solute particles per liter of solution. When solutions of different osmolarities are separated by a membrane permeable to water, but not to solute, water will move from the side with lower osmolarity to the side with higher osmolarity.

    Three terms—hyperosmotic, hypoosmotic, and isoosmotic—are used to describe relative osmolarities between solutions. For example, when comparing two solution that have different osmolarities, the solution with the higher osmolarity is said to be hyperosmotic to the other, and the solution with lower osmolarity is said to be hypoosmotic. If two solutions have the same osmolarity, they are said to be isoosmotic.

    In healthcare settings and biology labs, it’s often helpful to think about how solutions will affect water movement into and out of cells. The ability of an extracellular solution to make water move into or out of a cell by osmosis is known as its tonicity. Tonicity is a bit different from osmolarity because it takes into account both relative solute concentrations and the cell membrane’s permeability to those solutes.

    Three terms—hypertonic, hypotonic, and isotonic—are used to describe whether a solution will cause water to move into or out of a cell:

    If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume. A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane.

    If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, and the cell will gain volume. If the solute concentration outside the cell is lower than inside the cell, and the solutes cannot cross the membrane, then that solution is hypotonic to the cell.

    If a cell is placed in a hypertonic solution, water will leave the cell, and the cell will shrink. In an isotonic environment, there is no net water movement, so there is no change in the size of the cell. When a cell is placed in a hypotonic environment, water will enter the cell, and the cell will swell.

    In the case of a red blood cell, isotonic conditions are ideal, and your body has homeostatic (stability-maintaining) systems to ensure these conditions stay constant. If placed in a hypotonic solution, a red blood cell will bloat up and may explode, while in a hypertonic solution, it will shrivel—making the cytoplasm dense and its contents concentrated—and may die.

    In the case of a plant cell, however, a hypotonic extracellular solution is actually ideal. The plasma membrane can only expand to the limit of the rigid cell wall, so the cell won't burst, or lyse. In fact, the cytoplasm in plants is generally a bit hypertonic to the cellular environment, and water will enter a cell until its internal pressure—turgor pressure—prevents further influx.

    Maintaining this balance of water and solutes is very important to the health of the plant. If a plant is not watered, the extracellular fluid will become isotonic or hypertonic, causing water to leave the plant's cells. This results in a loss of turgor pressure, which you have likely seen as wilting. Under hypertonic conditions, the cell membrane may actually detach from the wall and constrict the cytoplasm, a state called plasmolysis (left panel below).

    Tonicity is a concern for all living things, particularly those that lack rigid cell walls and live in hyper- or hypotonic environments. For example, paramecia—pictured below—and amoebas, which are protists that lack cell walls, may have specialized structures called contractile vacuoles. A contractile vacuole collects excess water from the cell and pumps it out, keeping the cell from lysing as it takes on water from its hypotonic environment.

    [Attribution and references]

  6. Apr 9, 2020 · Osmosis plays an important role in the human body, especially in the gastro-intestinal system and the kidneys. Osmosis helps you get nutrients out of food. It also gets waste products out of your blood.

  7. Why are osmoregulation and osmotic balance important to body functions? What is osmolarity and how is it measured? What are osmoregulators or osmoconformers, and how do these tools allow animals to adapt to different environments?

  1. People also search for