Yahoo Web Search

Search results

  1. By experimenting with pea plant breeding, Mendel developed three principles of inheritance that described the transmission of genetic traits, before anyone knew genes existed. Mendel's insight ...

    • Overview
    • Education and early career
    • Experimental period

    Gregor Mendel was an Austrian scientist, teacher, and Augustinian prelate who lived in the 1800s. He experimented on garden pea hybrids while living at a monastery and is known as the father of modern genetics.

    Why is Gregor Mendel famous?

    Through his careful breeding of garden peas, Gregor Mendel discovered the basic principles of heredity and laid the mathematical foundation of the science of genetics. He formulated several basic genetic laws, including the law of segregation, the law of dominance, and the law of independent assortment, in what became known as Mendelian inheritance.  

    Gregor Mendel (born July 20, 1822, Heinzendorf, Silesia, Austrian Empire [now Hynčice, Czech Republic]—died January 6, 1884, Brünn, Austria-Hungary [now Brno, Czech Republic]) botanist, teacher, and Augustinian prelate, the first person to lay the mathematical foundation of the science of genetics, in what came to be called Mendelism.

    Born to a family with limited means in German-speaking Silesia, Mendel was raised in a rural setting. His academic abilities were recognized by the local priest, who persuaded his parents to send him away to school at the age of 11. His Gymnasium (grammar school) studies completed in 1840, Mendel entered a two-year program in philosophy at the Philosophical Institute of the University of Olmütz (Olomouc, Czech Republic), where he excelled in physics and mathematics, completing his studies in 1843. His initial years away from home were hard, because his family could not sufficiently support him. He tutored other students to make ends meet, and twice he suffered serious depression and had to return home to recover. As his father’s only son, Mendel was expected to take over the small family farm, but he preferred a different solution to his predicament, choosing to enter the Altbrünn monastery as a novitiate of the Augustinian order, where he was given the name Gregor.

    The move to the monastery took him to Brünn, the capital of Moravia, where for the first time he was freed from the harsh struggle of former years. He was also introduced to a diverse and intellectual community. As a priest, Mendel found his parish duty to visit the sick and dying so distressing that he again became ill. Abbot Cyril Napp found him a substitute-teaching position at Znaim (Znojmo, Czech Republic), where he proved very successful. However, in 1850 Mendel failed an exam—introduced through new legislation for teacher certification—and was sent to the University of Vienna for two years to benefit from a new program of scientific instruction. As at Olmütz, Mendel devoted his time at Vienna to physics and mathematics, working under Austrian physicist Christian Doppler and mathematical physicist Andreas von Ettinghausen. He also studied the anatomy and physiology of plants and the use of the microscope under botanist Franz Unger, an enthusiast for the cell theory and a supporter of the developmentalist (pre-Darwinian) view of the evolution of life. Unger’s writings on the latter made him a target for attack by the Roman Catholic press of Vienna shortly before and during Mendel’s time there.

    In the summer of 1853, Mendel returned to the monastery in Brünn, and in the following year he was again given a teaching position, this time at the Brünn Realschule (secondary school), where he remained until elected abbot 14 years later. He attempted the teacher exam again in 1856, although the event caused a nervous breakdown and a second failure. However, these years were his greatest in terms of success both as teacher and as consummate experimentalist. Once abbot, his administrative duties came to occupy the majority of his time. Moreover, Mendel’s refusal to permit the monastery to pay the state’s new taxes for a religious fund led to his involvement in a long and bitter dispute with the authorities. Convinced that this tax was unconstitutional, he continued his opposition, refusing to comply even when the state took over the administration of some of the monastery’s estates and directed the profits to the religious fund.

    Britannica Quiz

    In 1854 Abbot Cyril Napp permitted Mendel to plan a major experimental program in hybridization at the monastery. The aim of this program was to trace the transmission of hereditary characters in successive generations of hybrid progeny. Previous authorities had observed that progeny of fertile hybrids tended to revert to the originating species, and they had therefore concluded that hybridization could not be a mechanism used by nature to multiply species—though in exceptional cases some fertile hybrids did appear not to revert (the so-called “constant hybrids”). On the other hand, plant and animal breeders had long shown that crossbreeding could indeed produce a multitude of new forms. The latter point was of particular interest to landowners, including the abbot of the monastery, who was concerned about the monastery’s future profits from the wool of its Merino sheep, owing to competing wool being supplied from Australia.

    Mendel chose to conduct his studies with the edible pea (Pisum sativum) because of the numerous distinct varieties, the ease of culture and control of pollination, and the high proportion of successful seed germinations. From 1854 to 1856 he tested 34 varieties for constancy of their traits. In order to trace the transmission of characters, he chose seven traits that were expressed in a distinctive manner, such as plant height (short or tall) and seed colour (green or yellow). He referred to these alternatives as contrasted characters, or character-pairs. He crossed varieties that differed in one trait—for instance, tall crossed with short. The first generation of hybrids (F1) displayed the character of one variety but not that of the other. In Mendel’s terms, one character was dominant and the other recessive. In the numerous progeny that he raised from these hybrids (the second generation, F2), however, the recessive character reappeared, and the proportion of offspring bearing the dominant to offspring bearing the recessive was very close to a 3 to 1 ratio. Study of the descendants (F3) of the dominant group showed that one-third of them were true-breeding and two-thirds were of hybrid constitution. The 3:1 ratio could hence be rewritten as 1:2:1, meaning that 50 percent of the F2 generation were true-breeding and 50 percent were still hybrid. This was Mendel’s major discovery, and it was unlikely to have been made by his predecessors, since they did not grow statistically significant populations, nor did they follow the individual characters separately to establish their statistical relations.

    Students save 67%! Learn more about our special academic rate today.

    Learn More

    • Robert Olby
  2. People also ask

  3. Apr 2, 2014 · Gregor Mendel, known as the "father of modern genetics," was born in Austria in 1822. A monk, Mendel discovered the basic principles of heredity through experiments in his monastery's garden. His ...

  4. Mar 15, 2024 · Mendelian inheritance, the principles of heredity formulated by Austrian-born botanist, teacher, and Augustinian prelate Gregor Mendel in 1865. These principles compose what is known as the system of particulate inheritance by units, or genes. The later discovery of chromosomes as the carriers of genetic units supported Mendel’s two basic ...

    • The Editors of Encyclopaedia Britannica
  5. Mendel’s laws, and later findings building on those laws, allow us to understand and predict the inheritance of many human traits, including genetic disorders. The monk in the garden: Gregor Mendel Johann Gregor Mendel (1822–1884), often called the “father of genetics,” was a teacher, lifelong learner, scientist, and man of faith.

  6. Feb 7, 2022 · Quill: In biology classes, we learn that Gregor Mendel’s experiments breeding pea plants in the mid-19th century taught us that inherited traits are delivered to offspring on pairs of genes, one ...

  7. FLHC 52 / Alamy. Gregor Mendel discovered the basic principles of heredity through experiments with pea plants, long before the discovery of DNA and genes. Mendel was an Augustinian monk at St ...

  1. People also search for